terça-feira, 19 de abril de 2011

Matemática

Geometria analitica é uma parte da mateḿatica,que é um estudo que aprendemos
se prestarmos muita atênção na explicação do professor, porque não é facil mas também não é difícil.
Nossos primeiros assuntos foram Sistema Cartesiano ortogonal Distância entre dois ponto Condições de alianhamento de três pontos Coeficiente angular de uma reta.
Os estudos iniciais da geometria analítica se deram no século XVII.
1 - Introdução

A Geometria Analítica é uma parte da Matemática , que através de processos particulares , estabelece as relações existentes entre a Álgebra e a Geometria. Desse modo , uma reta , uma circunferência ou uma figura podem ter suas propriedades estudadas através de métodos algébricos .
Os estudos iniciais da Geometria Analítica se deram no século XVII , e devem-se ao filósofo e matemático francês René Descartes (1596 - 1650), inventor das coordenadas cartesianas (assim chamadas em sua homenagem), que permitiram a representação numérica de propriedades geométricas. No seu livro Discurso sobre o Método, escrito em 1637, aparece a célebre frase em latim "Cogito ergo sum" , ou seja: "Penso, logo existo".

1.1 - Coordenadas cartesianas na reta

Seja a reta r na Fig. abaixo e sobre ela tomemos um ponto O chamado origem.
Adotemos uma unidade de medida e suponhamos que os comprimentos medidos a partir de O, sejam positivos à direita e negativos à esquerda.

O comprimento do segmento OA é igual a 1 u.c (u.c = unidade de comprimento). É fácil concluir que existe uma correspondência um a um (correspondência biunívoca) entre o conjunto dos pontos da reta e o conjunto R dos números reais. Os números são chamados abscissas dos pontos. Assim, a abscissa do ponto A’ é -1, a abscissa da origem O é 0, a abscissa do ponto A
é 1, etc.
A reta r é chamada eixo das abscissas.

1.2 - Coordenadas cartesianas no plano

Com o modo simples de se representar números numa reta, visto acima, podemos estender a idéia para o plano, basta que para isto consideremos duas retas perpendiculares que se interceptem num ponto O, que será a origem do sistema. Veja a Fig. a seguir:

Dizemos que a é a abscissa do ponto P e b é a ordenada do ponto P.
O eixo OX é denominado eixo das abscissas e o eixo OY é denominado eixo das ordenadas.
O ponto O(0,0) é a origem do sistema de coordenadas cartesianas.
Os sinais algébricos de a e b definem regiões do plano denominadas QUADRANTES.
No 1º quadrante, a e b são positivos, no 2º quadrante, a é negativo e b positivo, no 3º quadrante, ambos são negativos e finalmente no 4º quadrante a é positivo e b negativo.

Observe que todos os pontos do eixo OX tem ordenada nula e todos os pontos do eixo OY tem abscissa nula. Assim, dizemos que a equação do eixo OX é y = 0 e a equação do eixo OY é
x = 0.
Os pontos do plano onde a = b, definem uma reta denominada bissetriz do 1º quadrante, cuja equação evidentemente é y = x.
Já os pontos do plano onde a = -b (ou b = - a), ou seja, de coordenadas simétricas, definem uma reta denominada bissetriz do 2º quadrante, cuja equação evidentemente é y = - x.
Os eixos OX e OY são denominados eixos coordenados.

Exercícios Resolvidos

1) Se o ponto P(2m-8 , m) pertence ao eixo dos y , então :

a) m é um número primo
b) m é primo e par
c) m é um quadrado perfeito
d) m = 0
e) m < 4

Solução:
Se um ponto pertence ao eixo vertical (eixo y) , então a sua abscissa é nula.
Logo, no caso teremos 2m - 8 = 0, de onde tiramos m = 4 e portanto a alternativa correta é a letra C, pois 4 é um quadrado perfeito (4 = 22).

2) Se o ponto P(r - 12 , 4r - 6) pertença à primeira bissetriz , então podemos afirmar que :

a) r é um número natural
b) r = - 3
c) r é raiz da equação x3 - x2 + x + 14 = 0
d) r é um número inteiro menor do que - 3 .
e) não existe r nestas condições .

Solução:
Os pontos da primeira bissetriz (reta y = x), possuem abscissa e ordenada iguais entre si. Logo, deveremos ter: r - 12 = 4r - 6 de onde conclui-se r = - 2.
Das alternativas apresentadas, concluímos que a correta é a letra C, uma vez que -2 é raiz da equação dada. Basta substituir x por -2 ou seja:
(-2)3 - (-2)2 + (-2) + 14 = 0 o que confirma que -2 é raiz da equação.

3) Se o ponto P(k , -2) satisfaz à relação x + 2y - 10 = 0 , então o valor de k 2 é :

a) 200
b) 196
c) 144
d) 36
e) 0

Solução:
Fazendo x = k e y = -2 na relação dada, vem: k + 2(-2) - 10 = 0.
Logo, k = 14 e portanto k2 = 142 = 196.
Logo, a alternativa correta é a letra B.

2 - Fórmula da distância entre dois pontos do plano cartesiano

Dados dois pontos do plano A(Xa,Ya) e B(Xb,Yb) , deduz-se facilmente usando o teorema de Pitágoras a seguinte fórmula da distancia entre os pontos A e B:

Esta fórmula também pode ser escrita como: d2AB = (Xb - Xa)2 + (Yb - Ya)2 , obtida da anterior, elevando-se ao quadrado (quadrando-se) ambos os membros.

Exercício Resolvido

O ponto A pertence ao semi-eixo positivo das ordenadas ; dados os pontos B(2 , 3) e C(-4 ,1) , sabe-se que do ponto A se vê o segmento BC sob um ângulo reto . Nestas condições podemos afirmar que o ponto A é :

a) (3,0)
b) (0, -1)
c) (0,4)
d) (0,5)
e) (0, 3)

Solução:
Como do ponto A se vê BC sob um ângulo reto, podemos concluir que o triângulo ABC é retângulo em A. Logo, vale o teorema de Pitágoras: o quadrado da hipotenusa é igual à soma dos quadrados dos catetos. Portanto, podemos escrever: AB2 + AC2 = BC2 (BC é a hipotenusa porque é o lado que se opõe ao ângulo reto A). Da fórmula de distância, podemos então escrever, considerando que as coordenadas do ponto A são (0,y) , já que é dado no problema que o ponto A está no eixo dos y e portanto sua abscissa é nula:

AB2 = ( 0 - 2 )2 + ( y - 3 )2 = 4 + ( y - 3 )2
AC2 = ( 0 - (-4))2 + ( y - 1)2 = 16 + ( y - 1 )2
BC2 = ( 2 - (-4))2 + ( 3 - 1 )2 = 40
Substituindo, vem: 4 + ( y - 3 )2 + 16 + ( y - 1 )2 = 40 \ ( y - 3 )2 + ( y - 1)2 = 40 - 4 - 16 = 20

Desenvolvendo, fica: y2 - 6y + 9 + y2 - 2y + 1 = 20 \ 2y2 - 8y - 10 = 0 \ y2 - 4y - 5 = 0 , que resolvida, encontramos y = 5 ou y = -1. A raiz y = -1 não serve, pois foi dito no problema que o ponto A está no semi-eixo positivo . Portanto, o ponto procurado é A(0,5), o que nos leva a concluir que a alternativa correta é a letra D.

3 - Ponto médio de um segmento

Dado o segmento de reta AB , o ponto médio de AB é o ponto M Î AB tal que AM = BM .
Nestas condições, dados os pontos A(x1 , y1) e B(x2 , y2) , as coordenadas do ponto médio
M(xm , ym) serão dadas por:

Exercício Resolvido

Sendo W o comprimento da mediana relativa ao lado BC do triângulo ABC onde A(0,0), B(4,6) e C(2,4) , então W2 é igual a:

a) 25
b) 32
c) 34
d) 44
e) 16

Solução:
Chama-se mediana de um triângulo relativa a um lado, ao segmento de reta que une um vértice ao ponto médio do lado oposto. Assim, a mediana relativa ao lado BC será o segmento que une o ponto A ao ponto médio de BC. Das fórmulas de ponto médio anteriores, concluímos que o ponto médio de BC será o ponto M( 3, 5). Portanto, o comprimento da mediana procurado será a distância entre os pontos A e M. Usando a fórmula de distância encontramos AM = Ö 34 ou seja raiz quadrada de 34. Logo, W = Ö 34 e portanto W2 = 34, o que nos leva a concluir que a resposta correta está na alternativa C.

4 - Baricentro de um triângulo

Sabemos da Geometria plana , que o baricentro de um triângulo ABC é o ponto de encontro das 3 medianas . Sendo G o baricentro , temos que AG = 2 . GM onde M é o ponto médio do lado oposto ao vértice A (AM é uma das 3 medianas do triângulo).
Nestas condições , as coordenadas do baricentro G(xg , yg) do triângulo ABC onde A(xa , ya) , B(xb , yb) e C(xc , yc) é dado por :

Conclui-se pois que as coordenadas do baricentro do triângulo ABC, são iguais às médias aritméticas das coordenadas dos pontos A , B e C.

Assim, por exemplo, o baricentro (também conhecido como centro de gravidade) do triângulo ABC onde A(3,5) , B(4, -1) e C(11, 8) será o ponto G(6, 4). Verifique com o uso direto das fórmulas.

Exercício resolvido

Conhecendo-se o baricentro B(3,5), do triângulo XYZ onde X(2,5) , Y(-4,6) , qual o comprimento do segmento BZ?

Solução:
Seja o ponto Z(a,b). Temos, pela fórmula do baricentro:
3 = (2 - 4 + a) / 3 e 5 = (5 + 6 + b) / 3
Daí, vem que a = 11 e b = 4. O ponto Z será portanto Z(11, 4).
Usando a fórmula da distância entre dois pontos, lembrando que B(3,5) e Z(11,4),
encontraremos BZ = 651/2 u.c. (u.c. = unidades de comprimento).

Agora resolva este:

Os pontos A(m, 7), B(0, n) e C(3, 1) são os vértices de um triângulo cujo baricentro é o ponto
G(6, 11). Calcule o valor de m2 + n2.
Resposta: 850

Veja Também ...

* Teorema dos Cosenos, TC
* Trigonometria, Período das funções
* Noções de Probabilidade
* Geometria Plana, Prisma
* Geometria Plana
* Matrizes e Determinantes I